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Using a selfcoupled spinorfield (Fermicoupling) as a model to describe relativistic nucleon-
nucleon scattering it is shown that the functional S-matrix construction for relativistic clusters in
nonlinear spinortheory proposed by Stumpf reproduces in lowest order perturbation theory the
result obtained by usual quantum field theoretical methods.

1. Introduction

In order to obtain theoretical information from
nonlinear spinor theory! Stumpf and coworkers
have developped a functional quantum theory 2
which enables one to calculate not only bounded
states3 but also S-matrix elements of a nonlinear
quantized field, where generally the particles are
given by relativistic clusters created by the field 4-9
To achieve this Stumpf introduced an universal
scalarproduct in functional space?-9. Using that
product, Englert10 succeeded in orthonormalizing
generalized free field functionals while Schéafer!!
examined the normalization of Boson functionals in
nonlinear spinor theory. Calculations for the sim-
plest scattering processes in nonlinear spinor theory
are in preparation.

In this paper the above mentioned scalarproduct
will be applied to a special case of a nonlinear field
theory in the interaction representation, namely to
the case of a selfcoupled spinorfield1,12-15, In the
interaction representation the particles occuring are
always pointparticles. They can be considered to be
the simplest clusters that occur, so that for these
particles Stumpf’s functional S-matrix construction
should reproduce the usual results, obtained by con-
ventional methods. This will be shown in lowest
order perturbation theory for a model of relativistic
nucleon-nucleon scattering characterized by:

1) the mass of the nucleons is incorporated into the
field equation from the very beginning,

2) the asymptotic free states satisfy the free Dirac
equation with mass m,

3) the field operators satisfy canonical commutation
rules,
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4) the interaction is assumed to be a Fermi cou-
pling 12-15,

5) for the S-matrix element only the lowest order
of perturbation theory (contact graph) is con-
sidered. Therefore problems arising from diver-
gencies aren’t of interest in connection with this

paper.

In Section 2 usual quantum field theoretical me-
thods are applied to calculate the S-matrix element
of relativistic nucleon-nucleon scattering in lowest
order perturbation theory.

In Section 3 we give the functional formulation
of the relativistic nucleon-nucleon scattering. Here-
by each state |a) of the fieldtheoretical Hilbertspace
is mapped into the corresponding functional state
|24 (j)> with the help o the set of timeordered 7-
functions belonging to | a>. To calculate the S-matrix
element one has to construct the advanced and re-
tarded functional scattering states. Performing this,
one notices that it is convenient — if not necessary
— to introduce besides the timeordered z-functions
(in this paper denoted by 7%) used by Stumpf and
coworkers a new set, namely the set of antitime-
ordered 7-functions. For these scattering states we
obtain integral-equations which are solved by
iteration, leading to Neumann series.

Before evaluating these series in lowest approxi-
mation, we introduce in Section 4 the socalled
physical scalarproduct in functional space which is
defined via a sequence of generalized functions. To
each state | T4 (j)) in functional space a correspond-
ing reduced functional e-state |, (j))¢ may be
defined, where & defines the sequence.

Using this scalar product we show in Section 5
that the asymptotic free particles states may be
orthonormalized.
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In the Sections 6 and 7 we then construct the duces the result obtained by usual quantum field
reduced functional advanced and retarded e-scatter-  theoretical methods. In general spinor indices are
ing state in lowest approximation. suppressed whereas natural units (Z=c=1) are
used everywhere. Furtheron we also use nearly

In the last section the S-matrix element of rela- : ; : ;
everywhere the generalized Einstein convention

tivistic nucleon-nucleon scattering is calculated in
lowest approximation. Comparison with the result [ (@) g () := 2 [ dafo(2) ga (@) .
obtained in Section 2 shows that the functional *

S-matrix construction proposed by Stumpf repro-  Supplements are given in the appendices.

2. Quantumfieldtheoretical Formulation

The model to describe relativistic nucleon-nucleon scattering may be given here by a self coupled spinor
field p (z) with @ = (29, @1, v2, x3) and may be characterized by the following Hamiltonian12:

H(t)=H(0) = [d3y(@)(—iy-V+ m)p)+go [dPr:p@) vuy (@) p (¥) vhy(x) : = Ho(t) + Hi(t) (2.1)

with y# (u=0,....3) Dirac matrices,
g0 coupling const,
p=170ypt adjoint field op. (+ denotes hermitean conj.),
v one of the five lorentzinvariant couplings.

The dots mean normal ordering.
For p and p we assume the following equal time anticommutation relations:

[ (@) 9] o ner = [P PN s roeay =05 @), PN g = 00— 1) (22)
From (2.1) and (2.2) we get with Heisenberg’s equation of motion the following field equations:
(— iyt ut m) p(@) = — 290 vy (@) Pla) iy a): 2.3)
(EyhCut+m)y(x) = 2go:vuyp(x)p(@)vhy(e):.

Now let K = {KO, {:s... energy, momentum, spin ...} be a complete set of quantum numbers of one
nucleon, 2Ky in> and lKg’Kl’ out> the in- and outgoing scattering state for a two nucleon system
respectively, then the S-matrix element S (K, Ko'; K1 K») is given by 12: 16:

S(Kl'K) Kl ) —<K1 K7 0ut|KaK11n> (24)
Using reduction technics one obtains 12 16:

S(KY Ky ; K1Ko) =13 5 (— 1)P8(R) — R,,) 0(Rs’ — 8,)

+ 3 (— i) Za)* [day...dag U (2| K1 U (wa| Ko') (i y# 0 — M)y, (i 4 9y — m),, (2.5)
X (0| T () y(a2) p(as) p(va) |()\ — iyH Oy — m),, - iyndy —m),, Ulxs| Ko) U(xs| Ky)
where Zs is the renormalization constant and

U(x|K) = [1/(27)3[2] )/ m|KO e 1K u (K, s)

denotes the Dirac spinor u(§, s) in configuration space. Using 12 16

- 0] T'yin (1) ... i (x4) U(co, — o0) |0) ,
<0\Tw(:rl)w(:rz)w(-rs)w(-m)|0>=( L li))| U?j (ﬂoo 0 i (2.6)
with
Ufoe,—oa) =2 ( ?)nfdylmynT[%”l( i (y1), P10 (1)) - A1 (P (Yn)s Y ()] (2.7)
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where #7 is the Hamiltonian density belonging to Hi(f) then one obtains in lowest order perturbation
theory

S(Ky Ky ; K1 Ka) = 1S (— 1)PO(R) — R5) 6(Rs — &) 2.8)
Aia
! Ene B S Ky + Ks’ — Ky — Ka) S (— DPa(R) a0 (S,,) & (Ss") v (8
- Z22 ]/K10K20K10'K20/ (21)6 ( 1 T 2 — il == 2)2,:/}:2(_ ) u( l)lﬂu( Zl)u(‘iz)v u(i/..z)'

3. Functional Formulation

First of all we put p =: p;and p =: y2 as in6. Then Eqs. (1.2) and (1.3) may be written in the following
way:

(Yo (2), Yo ()] jzo=20e = t A’ 0(E — E) (3.1)
(— i Lop" Cpu+ mdap) s (x) = go Vapys : wp(x) wy (@) po(x): (3.2)
with
0 —1 1 0 —1 0 0 0
Ao(a' = )/0 (~1 5), Faﬂ” = Vﬂ <0 _ 1)7 Vaﬁyd =2 Baﬁyu C’;/dus Bocﬁ:u = vﬂ( 0 1>a O‘Vdu . ’Uu(l O)
(3.3)

To solve such a problem one has to construct an explicit representation of the field operator satisfying (3.1),
(3.2) and certain subsidiary conditions resulting from the underlying symmetry groups. This is a very
difficult task which has been solved only for very simple and physically unrealistic models. To avoid these
difficulties we consider single states and characterize them by their projections on a cyclic basis. In former
papers of Stumpf and coworkers only projections on one cyclic basis were considered, namely the 7+-func-
tions defined by

T+ (1, v s 6ilg

Qg...0p

@) = €0| Ty, (21) - oy 2a) | @ - (3.4)
Besides these functions we use in this paper also the 7—-functions defined by

T (@3 | @) = (0| Ty, (1) - Py (@) | 6 (3-5)

«On

where 7' and T means time- and anti-time-ordering respectively. The reason is the following: The func-
tional S-matrix-construction given by Stumpf7-8 is based on the fieldtheoretic S-matrix-construction 17,18
by the retarded and advanced scattering state in the Schrodinger picture at the time ¢t = 0. This is a very
general construction as it makes no use of the possibility of splitting H into Hy and H; which is necessary
for the interaction representation. In order to construct the retarded and advanced scattering states one
has to investigate the boundary conditions very thoroughly. Performing this one notices that it is con-
venient to use for the description of causal (retarded) states the 7-functions and for acausal (advanced)
states the 7—-functions.

A similar principle is emploied by Nishijima19. He uses the reduction formula for retarded and advanced
products for the definition of the retarded and advanced scattering states respectively. Furtheron 7+- as
well as 7--functions are also used in Bethe-Salpeter theory 20, where 7+ corresponds to the usual B-S-ampli-
tude, while 7~ corresponds to the adjoint B-S-amplitude.

For these 7*-functions a coupled system of linear integral equations may be derived by using (3.1) and
(3.2). Additional these 7*-functions have to satisfy certain subsidiary conditions?21-23 resulting from the
corresponding symmetry groups. A very elegant way to write down these equations is the functional
formalism.

For the functional treatment we introduce anticommuting sources j, (x) and corresponding functional
derivatives Oy (x) with:

[ (2), jor (@) ]+ = [0x (2), O (2)]+ =0, [0x (), Jur (2')]+ = Oqa” (x — 7). (3.6)
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If 2" = A + ais a Poincaré transformation we assume the following transformation properties-
V 81 (l) V-1= Dqﬁ €5 (.I")
Viu(2) V-1 = Dojjp(a)

where S is a representation of the Poincaré group in the usual spinor space while V7 is one in the functional
Hilbert space.

Furthermore we assume the existence of a functional ground state | ¢¢> with

fo il -1
with Dw:(g(1 9 >

o | Ay (3.7)

Vige) = lgo>:  (2)[go> =0 (3.8)
and the validity of the relation:
jl; (l) = Fzﬁo Cﬁ(.(') s 81‘ (l) = Fiﬁo ]'13(.1') 3 (3())

A representation satisfying (3.6) to (3.9) was constructed by Stumpf24. With (3.6) and (3.8) we can inter-
pret jy (v) as a functional creation and ¢, (x) as a functional destruction operator. By successive application
of jy(x) to |q0\ one gets a basis in the functional space, namely the powerfunctionals?:

| D (72400 2= (1n) gy (@1) .. o (2n) | 0> - (3.10)
Defining the adjoint power functional «by
(Dp (G- )| = (1/n!) {po| O, (¥n) ... Oy (1) (3.11)
and considering the scalar product divided by (¢ | ¢o> one gets the orthonormality of the powerfunctionals:
— . . . 1
D Gree:o)| Dl 5> = ]2 Onm 2 (— 1)P Oup,, (21— ¥3,) -+ Onppn (Tn — ¥2,) - (3.12)
)" Meiidn

In order to describe the system of coupled integral equations for the 7=-functions we define the Generating
Functional :

TaE(G) 1= > (nn!) Tt (ll I |a | @) jy, (1) - .. Jo, (20) - (3.13)
n=0
In full analogy to24 the following functional equation for the functional state vector | Za*(j) > 1= Za*(j) |go>

may be derived:

(— i Lot Oy + m Oyp) Cp(x) |T(j)> = go Vapye {0p(2) 0y (x) s(x) — Fpy=(0) Co()
+ Fps*(0) C y(»T)—Fyo (0) 0g(x)} | T=(G)) F I Awpjpl@) | T=()>  (3.14)

where F* denotes the causal and acausal Feynman propagator respectively, which is defined by

Fagt(@y) = 0| Tya(x) psy) |0, Fug (xy) = 0| T yalx) ps(y)

The occurence of the F+(0) terms is equivalent to the normalordering in the field Equation (3.2). Functional
differentiation of (3.14) followed by putting all sources j equal zero yields the system of coupled integral
equations for the r+-functions. We will not write it down as we are mainly interested in solving (3.14)
by functional methods only. To do this it is convenient to consider instead of the T-functional the @-func-
tional defined by :

0> (3.15)

| T=(j)) = exp {— } ju () WFapg* (xy) j5 (1)} | D+ ()) (3.16)
where [F 5+ (xy) is the free causal and acausal Feynman propagator respectively.
For the @-functional Eq. (3.14) reads:
(_1rﬁ”(u+méuﬁ dg* |djjt (7)) = go Vapys : dg* (x) doy* () ds |¢i (7)) F IO Aupjpx ’(pi
(3.17)

with dy*(2) = — TFys* (xy) j5(y) + Ox(x). The dots mean normal ordering with respect to j and ¢. This
is equivalent to the occurence of the F=(0) terms in (3.14). In the following we are only dealing with the
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free Feynman propagator. Therefore we will suppress the f. As for the free propagator Fy s+ (xy) the follow-
ing equation holds:

(— i Tugh & + m 0ug) Fay* (@y) = + T Aupdla — ) (3.19)
one obtains from (3.17):
(— 0 L5p" T+ mOap) Op(2) | P=(j)) = go Vapyo : dg* (2) dy* (x) ds™ (2) : | D)) . (3.19)
By application of the causal and acausal propagator G;) (x — y) respectively, defined by
G —a) (— i 300+ mdyg) = 0ypd(x — ') (3.20)

with the same boundary conditions as F= we obtain from the causal and acausal functional states | T*(j))
respectively the retarded and avanced functional scattering states satisfying the following equation:

in
2) [ @@ (j)) = go Gy (v — ') Vargyo 1 dp* () dy* (27) dg* (2) : | D) () + () |DOUL()>  (3.21)
where |(I>°“t(j)> is a solution of the free functional equation:

(— i Ty 0+ m Bag) Qg () | DOUL()) =0 . (3.22)

Besides (3.21) the functional states | @& (j)) have to satisfy certain symmetry conditions. If we restrict
ourselves to the Poincaré group then these conditions are given by?2!l:
Pu|P® () = Ju| P (j ‘BZ | D) (j)) = m2| D (j (3.23)
G, Gr | D (5 >—38+1 [dﬂi) . G3| D@ () >—83](1§(i) )
with the quantum numbers: J = 4-component total momentum m = mass, s = spin, s3 = spindirection

and
Py = jo(@) Pu(@) Cx(®),  Muy :=Jau () Mpy(x) S (@),  OF:= (1/2m) 2P, IR,

where P (x), M| (x) are representations of the infinitesimal generators of the Poincare group in ordinary
spinor space.

Multiplication of (3.21) by jx(x) P (x) J%, summation over « and integration over z yields, when com-
bined with the first equation of (3.23) the socalled momentum averaging2s of (3.21):

[ DD () = go/(J2T) ju (%) J# Py () G5 (x—2") Voo 2 dp*= (2) dy* () do* (') : | DD () + | DOU(j)) (3.24)

or (1 — K®) D@ (j)) = |¢°“t(f)> (3.25)
with K& = (go/J 1) jo (@) J# Py(x) G5 (x — &') Vo gyo : dg* (') dyt (') do* (2) :

Instead of solving (3.25) exactly, which would require the knowledge of the boundary conditions for the
operator (1 — K&)~1 we try to solve (3.25) by iteration leading directly to the Neumann series:

I(D(t) G) = E[K(i)]v |@lout(7')> . (3.26)
r=0

By physical reasons there do not occur any homogenious solutions of the operator (1 — K () as the latter
are just the one particle solutions according to?, whereas here many particle solutions are constructed.
For practical use it is convenient to choose the Lorentz-frame with J = (E, 0, 0, 0). With Py = ¢(0/0x0)
(3.26) then reads:

=) in
l D& (5 z {90/ E ju ()1 (00x0) G;i,’(x — &) Vargys s dg= () dy= (') do* (27):}7 ] @out(5)> . (3.27)

Here one sees the full analogy to formula (4.16) of the nonrelativistic Fermion-Fermion scattering6. Before
evaluating the Neumann series (3.27) in the lowest approximation we define the scalarproduct for physical
state functionals in functional space.
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4. Physical Functional Scalarproduect

The physical scalarproduct, denoted by () in order to distinguish it from the scalarproduct introduced
in Section 3 which was denoted by ¢ ), is defined via a sequence of generalized functions. Before we give
the proper definition of the physical scalarproduct we will establish some preliminary definitions:

Def. 1: Let |T,4(j)) be a functional state

[}

|Za(G)) = D i*ta(®1... 20 | @) | Da(21...20)> (4.1)

n=>0

then the adjoint state (T, (j)| is given by

{(Ta(j) ! = Z (— )" Tp(xy...ap ‘ a) {Dy(xy...x1) ‘ (4.2)
n=0
with
Tn (210020 ) 5= Tn s oo L, T * (Gt |a) (4.3)

Def. 2: Let |Z4(j)> be the same functional state as in Def. 1, then the functional e-state | T4(j) ¢ is given

by replacing all @-functions occuring in the 7-functions by their integral representation

47 ( elot
O(+t)=1lm \ . do 44
(1) - 2’5~mizs (4)
without performinv e—0.
Def. 3: Let | 24(j)> be the same functional state as in Def. 1. The reduced functional state | T4, (j)> is

defined by neglectmg in the z-functions all terms with inner momentum conservation. In momentum

space this is achieved if we neglect in 7(¢1...¢,|a) all terms in which a factor (5( q;,) (1 <r =mn) occurs.
i :1
Def. 4: From certain universal requirements? 8 follows that the weighting operator for the physical
scalarproduct should have the following form in the coordinate space:

W, := > eng(n) | Dy(x1...20)) (Dp(@n...21)| (4.5)
n=0
where e is defined in such a way that it carries the 4 dimensional scalarproduct of a free particle state
over in the usual 3 dim. scalarproduct. Thereby the weighting factor g(n) is equal to 1 for » = 1, while
g (n) for n > 1 is determined by the orthonormality of the free n-particle states.
Now we are able to give the exact definition of the physical scalarproduct:

Def. 5: Let |Aa )> and |34 (j), be two functional states, then the physical scalarproduct of these two
states is given by:
(Ta(g) ‘ Tp(j)) := lim &(Ty 1 (j) | W,
e—0

Tor()F - (4.6)

Using (3.12) and Appendix I we can evaluate the right hand side of (4.6) and obtain:

(==}

(Ta(G)| T () = lim 3 g(n) en 1/[n! 2 55 (@1... 20| @) T (X1... 20| D)
e—=>0n=0
=lim 3 g(n) er 1/{2n)*" [n!]2} T°(q1...qn| @) T°(q1...qn]|b) . (4.7)
e—>0 ,,,0

Stumpf? and Englert 10 have established spectral representations for the +-functions. For the 7--functions
the calculations run quite similar and one obtains:

/

dlay=3r (| S(=rME ey (i @
§

3 ®an/ N
Hi...ftn-1 \ A wee An

/ n n—1 /[ 8 8 =, |
X 6( Eq;.rpa) [1 {5( qu,—v,,,>(2q9, —p,,.iee) }) (4.8)
s=1 ) s=1 r=1 r=1 ’

TETE(qL.
Tll (21 On
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where > jmeans integration or summation over a complete set of intermediate states | u)>. (p., p,) is the
energy-momentum eigenvector of such a state while p, = (p4°, pa) is that of the state |a). The structure
function M=r (;‘1‘.'.‘-""“&:) (r denotes the reduced part) is defined by:

M= (- pnonn ) i= (0] gy, (0) | > <ua ] -+ |n—1)> <pin—1| ,,(0) | @) (4.9)

where -+ a> is a causal or an acausal state.
Inserting now (4.8) into (4.7) one gets for the physical scalarproduct of two causal and acausal functional
states respectively 7. 10:

(fzai(j) lzbi(j)) . Z eng(n) I 45 M= (m. ;u,._l,aa) M= ( “u,. lab) (2n)2n+2 (27”')11—1

et T I Y S (4.10)

Hleesdn-1
n—1
X 6(27“ - pb) H {é(p;lls - p,u;) (i p,?t'.; :F p,(l)l; + 21:6)—1}}
s=1

whereas the physical scalarproduct for a causal and an acausal functional state is given by:

® eng n)]

=T ;(7.) I Sbi(f)) — lim Z TJ M7 (u; : ' n-1, a) M= (:; “Hn-1, b)( 7)2n+2 (271)” -1 (_ 1) (g)

e—=>0n=0 n: l,ul =t
Mleo.Un-1
=, (4.11)
X 0(pa— po) T1 {0 (06 — Pu_, — D) (£ PO F D, , F PO, + 20 e)—l}} . :
s=1
The expression for (T, ( |¢b j)) follows directly from the expression for (T,* (j) | Tp* (j)) Proved in7.10

however formula (4.11) has to be proven. To do this we will carry over the 1nterest1ncr quantity 7- - 7+
into an expression similar to that which one obtains for 7+ - 7+ given in10 formula (2.17). With (4.8) we
have:

T, (q1--qn| @) T,7 " (q1-- - qn | b)

n n—1 $
= Z(_ I)PTP/ Zf M- r(m Hn-1, a) M+ Zixll n—;;ﬁ (77) ‘)zZn-‘Zé( qu— pa) H [(S ( Z qz, — pﬂ,)
;{1..‘1.7, “re. 4 n-1 s=1 s=1 r=1
L' leeed'n ,“1---.“1!—1

s =1 n n—1 s =1
x(zlq‘z,—p?mwa) (30— ) T [ (Zq; —¥1,,.><Zq;:,—pug+ie) }
r= / §= §= 1 \r= r=1 /

= z —1 pip | S5 M (e Eai®) Mo (e sy (2 — 1)2n
Aecidn HMi...fn-1
M1 2 n ,U'x.../‘ n-1

n n n—1 ‘s n
5(qu—pa>6(2qs—pb>ﬁ {6( Zqz,—pu,>6( 2 ax, + p,u,—m) (4.12)
s=1 s=1 s=0 r=1 r=s+1 :

S 0 0 34 o g 0 ; ¥4
X(qu,—p;t,+2e) ( Zq/‘,’,’_pg"i‘p‘u’.‘_z"f) J}
\r=1

r=s+1

= Z (— 1)P+P'+ { ZIJ r(m Hn-1, a) M+r (ﬂl -1, b) T)2n+2
Free.n M. fin-y
Miceed'n Wi W n-1

(qu

s -1/ 8 =1
x( Sttt pmie]( Sat—ah+ el

1
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Replacing now in (4.12) by — v, by b, and py — p%. . by py, we essentially obtain formula
(2.17) of 10, Therefore it is sufficient, to perform essentially the inverse replacements in (4.10) in order to
obtain (4.11) taking care of the interchange u; — p'i.

5. Asymptotic Free Functional States

Free functional states are characterized by satisfying (3.22) and (3.23). First of all we consider one

particle states. Let K = {K9°, , s, m, ...} denote a complete set of quantum numbers, then the in- as
in
well as the outgoing free functional one particle states |@out(j, K), are given by 2

in

|¢)0“t 7 K Ifﬂ ‘K) ]g(l) l([o/\ (51)
where (cf. Appendix IT)
1
L, u (St s) etk for = _
(@] K) = 0| pp(a) | Ky = { @apppe ") p (5.2)
0 for =2
denotes a one particle solution of the free Dirac equation
(— i Lyt Q4 mOyp) fo(@| K) = 0. (5.3)

As for the S-matrix construction we only need the scalarproduct of advanced and retarded states we
restrict ourselves on the calculation of the physical scalarproduct of out- and ingoing free functional states.
For the one particle states we obtain with (3.16) and the translational invariance of F'=:

(IOUt(jf KI) T (]' K)) o (q)OUt(j7 K,) . (]~ K))
=limeg(1) fa(x|K') fp(x| K) =lim e270(0) 6 (X — &'). (5.4)
e—0) e—>0

This undefined expression may be transformed into a welldefined one, if we define the e-function
g€ (x| K) in an obvious way. As

v ( i 1
x| K) = fs(x L O(—1t)] = ) lim —— | e—iowt | —— —|de 55
s@| K) = fg(x| K)[O(t) + O(—t)] = fs(a 1K)£T32n5e [WT o= m—ng“’ (5.5)
we define fg¢ (x| K) by
¢(a| K) = fg(x| K) i \ e~iot ! — ! do . (5.6)
d 2w ) o4ie w—1¢
Inserting this in (5.4) then residual integration yields:
(ZTout(j, K') |Tin(j, K)) = lim e fg¢ (x| K') {5 (x| K) = O (R — &') . (5.7)
e—0
Comparing (5.7) and (5.4) one obtains the formal identity: lime270(0) :=1. (5.8)
e—0
Defining in (5.1) the one particle creation operator by: U (K) :=ifg(x|K)jg(x) (5.9)

then the free functional n-particle states are given by:

|¢0‘n(j, K]Kn)) = Q[T(Kl) LA (Kn) |(/0\ = (l”/l n‘)f(r1|K1) f(lann)](ll) ?(l”) ‘(]0>
= (i"/n!) '{ S(—DPf(ar]| Ky) ... fen| K3,)}j(@1) ... 5 (2n) | o> (5.10)

=:(i"/n!) @yt (1'1.. | Ky Kp)j(xr) ... 5(xn) | @o) .



K. Illig - Lowest Approximation of Relativistic Nucleon-Nucleon Scattering 9

The corresponding I-functional reads:

| Zout(j, Ky...Ky)) = exp{— }j(x) F=(xy)j(y)} | Pout(j, K1...Kn))
oo Tn+2u
:,,:Zo (nl _}:»2#)‘ Tin+2u (xl. - Tn+2u { Kl-- Kn) 7(x1) see j(xn+2u) |¢P0> (5~11)

where the 7=-functions are given by a specialization of formula (I1.7) of 26:

el

Tin-},gﬂ(l‘l...l‘n-;gu‘Kl...Kn): z (— 2”/,(

... Ans2u

' (Fn (.’I:;'l ...x;'nKl.. .Kn) Fi(x;_n_lx;_n'z) )

FE (@01 %is) - (5.12)
In momentum space this formula reads:

. (=1 5
Tn+2ui(91---9n+2ulKl---Kn) = Z ('— 1P) *21[/1”;1? (pni(q“q;ﬂlKlKn)

X FE(@r Qi) o P @rra s Qi) - (5.13)
From F=*(xy) = F+(x—y) it follows that F*(q192) = 0 (g1 -+ g2) F*(q1). Therefore according to Def. 3
the reduced 7=-functions are given by
7o (q1...Go | K1... Kn) = 8,0, @n*(q1. . qn| K1...Kn) = 05, Tn*(q1...qn | K1...K») . (5.14)
From here one obtains for the reduced e-z*-functions:

T (q1.. .o | K1...Kn) = 65, Tn(q1...qn | K1...Kn) = 8y, 9= 10 (q1- . .qn | K1...Ka) (5.15)
with this relation the scalarproduct of a free functional outgoing m-particle state and a free functional
ingoing n-particle state reads with (4.7):

(ZTout(j, Ky' ... K'p) | Tin(j, K1...Kp))

1 )
:67»'"[ 2 g(n )hmrn (1 qn| K1 Kn) Tn*(q1...qn | K1... Kpn) en@7)~4n . (5.16)
—0

Hises Anstu

A straight foreward calculation similar to that of10 gives the following spectral representation for the
Tn*-functions (spinor indices gj are written down explicitly):

= 4 e (q.. _ Lhap 3n+1 P
Tn™ loi. lan Kl Kn) - Vn" (2 7'[) ) z}(— 1) J dpl dpn—l

(5.17)

n n n—1 Ul j j =

X 20— l)PlHlfau(ﬁw) ( Z(%--’Q)) Hl {6 (Pf— Z{%)é ( Zqu.. = Pj)( ?Zlqg, -+ ie) 1} .
VieeeVn = j=1 1= 8= 8§= §=

By comparison with (4.8) one directly obtains the structure function for a free functional n-particle state:

n n—1 j
Mr (m Pnr, z&) =1fynl S(—1)F lHlfol(ﬁ,,) _Hlé (p, = Zlev.)- (5.18)
= j= 8=

1oy, 1on Y1...

Noting (5.18) and (4.11) we get for the scalarproduct (5.16) after some straight forward calculations:
(Tout(j, Ky' ... K'p) | TR ( 7' Ki...Ky))
g ’ ’ (faa ) wety i
= Opm lim ;—7 [fdp1...dpp_1dpi’...dp n—1 MT (” ey le )

e—>0 1o1... lon

3t (e B8 1) @) e iyt 5 = Ko)
10a... lo: =1
n—1 n n e
X H1 {6 (Z R — Pp—s— ps’)( ZlKi" =gt = Blyp 2ie) 1} (5.19)
8= i=1 =
1 n
— 2 (= DPTI0(R — Ky)

n! Vie.¥n j=1

= (Snm
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when we use (5.8) and choose
g(n) :=2n-1, (5.20)

Thus we have obtained the orthonormality of the free functional out- and ingoing states.

6. Two Particle Scattering Functional in Lowest Approximation

Let K1Ko and Ki'Ks' be the two complete sets of the two in- and outgoing particles respectively.
According to (5.10) the corresponding in- and outgoing free functional state is given by:

in -9

v - ? e . %
| Dot G, o)) =, P2 G Evay) T (€1) s (€2) [ 70 - (6.1)

Our aim is to evaluate the Neumann series (3.27) in the lowest approximation. First of all we perform the
normalordering in K=. This yields:

. iC e ’ ’ ’ i ’ ’ ’ ’
K= i? Ja() P G (@ — ') {— Varpps Frpp (v/ — y) FEyyr (@) — 2') Fop (2" — ')
X 3o (Y') J (') Jor (W) + Worgpo FEppr (27 — y') FEypr (&7 — 2") jgr (y') §y (27) Qs (2")
— Varpyo F2ppr (@ — ') g (') 2y (2') Q5(2") + Vargyo 0p(2”) Oy (2') 85 (')} (6.2)
with )
Wagys := Vagys — Vapoy — Vasyss  Vapye := Vapys — Vayps — Vaoyp - (6.3)

From (3.27) we have for » = 1:

| D@ (j, K1 Ka)y = K= | @out(j, K1 Ky)) + | @out(j, Ky K»)> =: | @@ (j, K1 Ka)) + | @0t (j, K1 Ko)>. (6.4)

Combining (6.1) and (6.2) we get after some elementary calculations:

|6 (j, K1 Ka)>
-\ ‘ . 1
- gE(‘) o G (w1 — 7) Vagpo F 5, (2 — %0) FL (v — 23) FE, (& — 24) /2 fo, (x5 | K1)
X fas (6| K2) ja1(21) ... jus (v6) | 0>
go; @ " " 1
TE'wm G @1— @) Wogyo Fi, (x — o) FI, (v — ) /2 {/22 — VP fu,(@a| K3,) fo(x| K 3,) ]l
X ?’i(’-‘l) < (4) | 0D (6.5)
1
=i Giﬂ)(n_l”“ﬁ/"Fﬁa (@ —=2) /_ (— DPfy (x| K3) fos |K;zl7a1(71 )iz (%2) | @0>-
B u : 2 1 )

As our starting point for defining the physical scalarproduct was the functional state | Tq (j)) given in (4.1)
with totally antisymmetric 7-functions we have to transform (6.5) into the standard form given by:
oo 'n

|a(i)> =3 gnl@r...2nla)j(@) ... j@n) | pod (6.6)

n=0 M.

with the totally antisymmetric ¢-functions:

1 A :
P (@1 s 2 |a@) = 5 O(wn) ... A(x1) | D, a)>/i=0 (6.7)
Using (6.5) and (6.7) we get for the ¢ ®)-functions of [dg(i) (j, K1 K»s)):

A .0 .
Fo® (022 K1 Ky) = go S (—1)P {z . G;mg‘(xl,l— T)IagyoF;—;uz (x — x,,z)}

Hipe C My

1 ’
X /2 {JZ; — 1P fo (x| K ;) fo( [K,-.z)} (6.8)
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and similar expressions for ¢ and ¢{*) which are of no interest in connection with this paper, as we are
only interested in first order terms of the coupling constant go in the S-matrix element.

As the functional states | T (j, K1 K,)) and | @& (j, K1 K»)) are combined by the transformation (3.16)
which is equal to that of free functional states (5.11) we have as in (5.14)"

| Zr® (j, K1 K»)) = | D) (j, K1 K2)) . (6.9)

In order to get the reduced @+*-functional state we consider the fouriertransform of (6.8) which reads
(cf. App. I and IIT):

2 1
@2 (15 | K1K3) = 9 27)16(q1 + g2 — K1 — Ko) { 2 (= DPfy(R;) fo(@zg)}
E V2 i
X Vaﬁyd{ S (= DPyYm2 4 g2, GF)(qu) FGE (— qu,)}- (6.10)
Hip2

According to Def. 3 of Section 4 the reduced functional scattering state then is given by

| T (G, K1 K2)> = | 6@ (j, K1 K2)) = | §,) (j, K1 K2)) + | @out(j, K1 Ko)>
= (i%/2) 2 (1 42| K1 K2) 1 (91) 1 (g2) | o> (6.11)
with P2 (q1q2| K1 K3) := G2 (q192| K1 K32) + 2(q192| K1 K>) .

Before closing this section we will examine the ég(i)-funetion in some more detail.
According to (5.2) we have fs =0. Therefore only the quantities V1111, Vis11, Vo1 and Vasyq are of
interest. From (3.3) and (6.3) we obtain:

= Varnn=Ven =0, Vo= 2v, @ vk (6.12)

Using the fact that Fi1= = Foor = G12® = Go1® = 0 and F5(9) = — Fp,(— ) then one obtains with
(6.12) and G1;® =: @@, 1o+ =: F+ from (6.10):

P2 ( (4% K1K2) = — ()/290/E) 6 (K1 + K2 — q1 — Q‘z){ S(— 1P (Ym2 + 012 FD (q1) vy

12

X [(R3,) F=(q2) 4 (R7,) — Ym? + q22 F=(q1) v#f(R;,) TS v, f(R5) } (6.13)

while the other g?g(i)-functions (= (;Apg(i)-functions with at least one o; =2, ¢ = 1,2) are zero.

7. Spectral Representation

The aim of this section is the determination of the functional retarded and advanced e-scattering state
in lowest approximation.

First of all we consider the spectral representation of a general To%-function with respect to a two particle
state | K). It reads according to (4.8):

(G| K) = fdp{ ;(~ P M (2K L) 27)7 (£19) 6(q1+ g2 — K) 6(qs, — 9) (%, — PO i) l[

(7.1)
Now we will prove the following
statement : The spectral representation of the quantity ¢»@ as given in (6.13) is that of a general 7o*-

function but with an & dependend structure function. Putting & = Y92 + m? and K := K+ K> the
latter is given by:
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A /2 1 1
Mm@k )= o0 —a) P e
Kopo(2m)3 | KO—2p0427¢ KO

(POy0 — vy + m)y, vuf(R1) (P00 + -
Lo —Ko— ) 90)2

KO(p®— K°) (27)®
X (P — K0y —p-

Y -+ m),, v f ()

1 1

KO  K0O—2p0F 2ie¢ }

Y + m)g, v f (K1) (p° — KO) p0 4+ p -y + m),, v4 ] (R)

) . (7.2)
proof : Inserting in (6.13) the expressions for £+ and G from App. III, we obtain with K := K, +
and o :=m1=|/m?+ q®=ws= ym? + g2% (as & = 0)

. : : 1 1
(22| K1K>) O @mpy2eq+ g2 — K - l
752 (4% | Ky £ xo,, CO20@+ g )/‘I;[1 W —oLic ghtoTiel
X LS (= 1P @4 m)vuf (R5,) @+ m) o0 (R,)]. (7.3)
Using now the relation -
nl 't Lot ko)
i—1 g% — o+ ie g%+ o Fie
2 1 1 1
— (g0 + g0 — KO)| S o -
(1% +¢q )L 1{[1{0_20)4_218 KO] P —wiis (7.4)
1 1 1
- F_Ko—i—?w:{:Qie quO—K(’—(uiié
we obtain from (7.3) after some elementary calculations
~ 4
520 (4| KuKo) = = P2 0 4 k)| S(C 0Py —poy+m)
o KO0 ke
X v f(S1) (@904 p-y 4+ m) vif(K2) ! — L . (7.5)
T K —20+2ie KO|g) —wtie
1 1 1 '
ol e
" | KO KO+20F2ie | g—K'—ow+e
or, when introducing an additional integration over p and putting o := }/m? + p* we have
X v 2 (2m)4
70 o KiKa) = = 10V 2T é<q1+q2—K)[‘z(—1>Pé<q,-.l—p)
X ~l<5(p°—w) (P00 —p-y +m)f (1) (P90 + p-y + m) vhf(Re) ! ————
l P° KO —2p0 1 24¢ K9 |
5 1 i
FOWI KO ) (00— K050 — ey ) naf (R0 (20— KO0y y 4
1 1 1
X vhf(Re) | — : 7.6
o (S2) K0+K0+2p0i2i€l}q_poiis} (7.6)

Comparison with (7.1) now directly yields the structure function (7.2), q.e.d.
With (5.15), (6.11) and (7.6) we now obtain for the functional advanced and retarded reduced e-scatte
ring state in lowest approximation:

> 1'2 ~ <
| T, (j, K1 K2))t = 51 P2@ (q192| K1K>) j(q1) i(g2) |¢0\+ ¢°e (q192| K1 K2) j (@1 (‘12)|¢0,\
in

=: | E,@ (, K1 K2)>¢ + | T,out (f, K1 Ka)e.
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8. Functional S-Matrix in Lowest Approximation

In the Heisenberg picture the S-matrix element is defined by the scalarproduct of the corresponding
advanced and retarded scattering state17-18:

Sap 1= <a) | b)), (8.1)

According to Stumpf7-9 the corresponding S-matrix element in functional space is given by

Sap=(TO(j, ) |TD (4, b)) = lim T, O (j, a) | We| T, (5, b)) (8.2)
e—0
Inserting (7.7) into (8.2), one obtains
S(Ki' Ko'; K1K») = (T (j, K1’ Ky') | TM (j, K1 K»))
= (Zout(j, K1' K') | Tin(j, K1 K>)) + (TO) (5, K1’ K2') |10 (j, K1 K?2))
+(Tout(j, Ky K') | T0(, K1 K2)) + (R0 (, Ky K5) |20 (G, K1 K2) .- (8.3)

As we are only interested in linear terms of the coupling constant go in the S-matrix element, it is
sufficient, to consider the first three terms in (8.3). The first term was just considered in Section 5, where
we found the result (5.19). The calculation of the other two terms will be performed now using (4.11),
(5.18) and (7.2). Taking into account the limes procedure ¢ — 0, one notices that from (7.2) only those
terms contribute which have the denominator K0 — 2 p® 4 24 ¢. Therefore we obtain with (5.20):

S L T T T . .
(Tout(j, Ky' Ko') | TM (j, K1 K3)) = lim 7279(2) Jdpdp Mr (7K )
e—0 .

1

¢ (2, K S _ o o ’
X Metr (@) @27 (= DB@ =P = 1) o o g e 0K — K
. ( ’ 1 F N F \ ’ N
= lim 2 (Apap! 5 3 (R0 e = )00 = D)
e—0 & ale
(PO — by M vaf (R0) (B0 0y ), 0 ()
KOpo(27)8 KO—2p0+ 2i¢ v o .
% (27)8 27wi (— 1) O(R — p — ') (KO — pO — p% + 2 ¢)-15(K — K') (8.4)
- o - 2./ 4 . od 7 7
= S (= P T (R Fon (V1) L2 ) (KYy0— Ry + )y v (S1)
A1lz KOK).«Z

X (K9 90— Q5, -y + m),, 04 (R2) (20)20(K — K').

Using now (A 2.8) we get:

(3out(j, Ky’ K2') | 20 (j, K1 K»)) = — i (2)* 0 (K — K') Igf,’f(f;l v
X %2(— 1)? ;9:12(911,) vu f(R1) @ (R;,) v4f(K2. (8.5)
In the same way we obtain
(TO(j, Ky Ky) | Tin(j, K1 K>)) (8.6)
gom?

— —i@a)8(K — K) >:(~1>P7156 W(S) YO 0* (R0 (R5) YO 0% ¥ (55,) -

K02 7)$ i 8

Using the relation 16
PO = py0
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valid for all five lorentzinvariant couplings and noticing that we are working in the special frame with
{ = 0, which implies together with the d-function occuring in (8.5) and (8.6) that K10 = K50 = K9 = K"’
we may combine (8.5) and (8.6). Thus we get for the S-matrix element in lowest approximation:

1
S(Ky Ko'; K1 K») = S(—=1DPO(RY — ],,)0(R — K,
(K1 Ky'; K1 Ko) 57 ;.}7‘.2( PO (S 1) O( 12) (8.7)

a— i(27t)46(K1'+K2’ —Kl—KQ)——&

gom?2 _ o
S(—1DPa(R1)vpu(R; Q) vk (R
(2 m)8 K1Y K2¥ K10 K0 /'.1/'.2( Fa(R) vut(R2) B (R,) viu(Ry)

which is just the result obtained in (2.8), when using conventional reduction technics and perturbation
theory. Therefore in the lowest approximation the functional approach and the conventional approach
are equivalent.
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Appendix I

Relations between coordinate space and momentum space:
Defining: .
ja(2) = [€9%]u(q)dg,  Qu(x) = 1/(27)* [ 7187 0y (q) dg (AL.1)
it follows from (1.2):
e (9). For (4] = [0a(@), S (q))e = 0. [Cal@). T (4] = duw 0(q — ). (A1.2)

As F(xzy) and G (xy) are translation invariant one has:

F(g1g2) = [exp{i(qrar + gaw2)} F (v122) derdas = (272)4 0 (q1+ g2) Fqu)
G(q192) = [exp{i(qra1+ q222)} G (v122) dwydas = 27)4 0 (g1 + ¢2) G(q) - (A1.3)
Defining now
n
Ta(®1...20 | @) = 1/(27)4" [exp {— i zqu;} Tu(@r...qn|@)dgy...dg, (A1.4)
i=1
then the T-functional in momentum space is given by
-~ 22 ln ~ > > .
|TaGD =2 Tn(@1-- an]@)7(q1) - 7(@n) | 90> - (A1.5)
n=0 .

Appendix II

The free Dirac-field and the normalization of one particle states.
We begin with the well-known decomposition of the free Dirac field 16:

d3p
27)32

w(g,t)=2§(

+s

‘/7'3 {b(p, s) u(p, s) e71pz 4 d+(p, s) v(p. s) €iP7} (A2.1)
p

and a similar formula for p*(r, ). A basis in the corresponding fieldtheoretical Hilbert space is given by
successive application of the creation operators b+ and d* to the vacuum |0). The scalarproduct of these
basical states should be defined relativistically invariant, as this is true for power functionals (2.5).
According to27 this means for one-particle states | K> and |K'):

(K'| Ky = (K%m) § (R — ). (A2.2)
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This can be achieved by introducing new creation- and destruction-operators &', b’+, d’, d’+ with:
(6" (p, 8), 0" (v", 8")]+ = [d' (1, 8), d'F (0, ") ]z = (p°/m) O (p — ') Oss’ (A2.3)

while the other anticommutators vanish. The connection between the primed and unprimed operators is
given by:

a'(p,8) =)r0ma(p,s) with ae{b bt d d*} (A2.4)
or expressed by the states:
| K> = b+ (R,5)]|0) = )/KOm b+ (R,s)|0). (A2.5)
With (A2.1) and (A2.5) we obtain for the matrixelement <0| yy () |K) for o = 1:
Oy By =, -y o) 08 =2 (@) ik (A2.6)
for o =2: 0| p(x) |[Ky=0 (A2.6)

where u (&, s) is the usual Dirac spinor satisfying
(K00 — Ry —m)u(R,s) =0 and a(R,s)u(R,s") = ss . (A2.7)

Furthermore the equation (8, s) (K990 —& -y — m) = 0 implies the useful formula:

F(R) (KO0 — &y 4 m) = 2mf(R). (A2.8)

Appendix III

The free causal and acausal Feynman propagator F=,z(xy) and the causal and acausal propagator
&) (2
%as?ncr ((2 1)3) (2 15) and from 16 the formulas (6.47) and (13.72) we obtain with A (p) = {& (p°9° —p-¥y)
+ m} (2m
F*(x120) = de [P°(27)73) {O (= (t1 — t2)) A+ (p) exp{— i p(x1 — 22)}
+ O(£ (2 — 1)) A_(p)exp{ip(xr—22)}},  (A3.1)
GO (y20) = 4+ 0 [dp (m[p®(27)738) {O (4 (t1 — t2)) A+ (p) exp{— i p(x1— x2)}
+ 0 (& (2 — 1)) A-(p) exp{ip(x1 — 22)}} . (A3.2)

In momentum space they read:

Fx(q1qo) = +i(27) d(q1+ g2) (4990 — q1- Y+ m)/)/2 q12 + m2
J

1 1
{ 5 . = BT } (A3.3)
¢1° l/q12+7n Lie @+ Ya2+m2Fie

~ (@2y°— g1y +m)
GO (g go) = — (27 2
(9:92) (27). 0(q1+g2) - 3t T m?

X{V/ —— T } (A3.4)
01°— a2+ m2 L ig 0+ Y2+ m2Fie
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