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Lowest Approximation of Relativistic Nucleon-Nucleon Scattering 
in Functional Quantum Theory

K. Illig
In s t i tu t  für Theoretische Physik  der U n iversitä t Tübingen 

(Z. Naturforsch. 29 a, 1 — 16 [1974] ; received 6  October 1973)

U sing a selfcoupled spinorfield (Ferm icoupling) as a m odel to  describe re la tiv istic  nucleon- 
nucleon scattering  it is shown th a t the  functional S -m atrix  construction  for re la tiv istic  clusters in 
nonlinear spinortheory  proposed by S tum pf reproduces in lowest o rder p e rtu rb a tio n  theo ry  the 
resu lt ob tained  by  usual quan tu m  field theoretical m ethods.

1. Introduction

In  order to  obtain theoretical information from 
nonlinear spinor theory1 S tum pf and coworkers 
have developped a functional quantum  theory 2 
which enables one to calculate not only bounded 
s ta te s3 bu t also ^-m atrix  elements of a nonlinear 
quantized field, where generally the particles are 
given by relativistic clusters created by the field4-9 
To achieve this S tum pf introduced an universal 
scalarproduct in functional space7-9. Using th a t 
product, E n g le rt10 succeeded in orthonormalizing 
generalized free field functionals while Schäfer11 
examined the normalization of Boson functionals in 
nonlinear spinor theory. Calculations for the sim ­
plest scattering processes in nonlinear spinor theory 
are in preparation.

In  this paper the above mentioned scalarproduct 
will be applied to  a special case of a nonlinear field 
theory in the interaction representation, namely to 
the case of a selfcoupled spinorfield1, 12-15. In  the 
interaction representation the particles occuring are 
always pointparticles. They can be considered to be 
the simplest clusters th a t occur, so th a t for these 
particles S tum pf’s functional ^-m atrix  construction 
should reproduce the usual results, obtained by con­
ventional methods. This will be shown in lowest 
order perturbation  theory for a model of relativistic 
nucleon-nucleon scattering characterized by:

1) the mass of the nucleons is incorporated into the 
field equation from the very beginning,

2) the asym ptotic free states satisfy the free Dirac 
equation with mass m,

3) the field operators satisfy canonical commutation 
rules,
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4) the interaction is assumed to  be a Fermi cou­
p ling12-15,

5) for the ^-m atrix  element only the lowest order 
of perturbation  theory (contact graph) is con­
sidered. Therefore problems arising from diver­
gencies aren’t  of interest in connection with this 
paper.

In  Section 2 usual quantum  field theoretical me­
thods are applied to calculate the /S-matrix element 
of relativistic nucleon-nucleon scattering in lowest 
order perturbation  theory.

In  Section 3 we give the functional formulation 
of the relativistic nucleon-nucleon scattering. H ere­
by each sta te  | a )  of the fieldtheoretical Hilbertspace 
is m apped into the corresponding functional state 
|^a(?)> ’with the help o the set of timeordered r- 
functions belonging to [ a).  To calculate the (S-matrix 
element one has to  construct the advanced and re ­
tarded functional scattering states. Performing this, 
one notices th a t it  is convenient — if not necessary
— to  introduce besides the timeordered r-functions 
(in this paper denoted by r+) used by Stum pf and 
coworkers a new set, namely the set of antitime- 
ordered r-functions. For these scattering states we 
obtain integral-equations which are solved by 
iteration, leading to Neum ann series.

Before evaluating these series in lowest approxi­
m ation, we introduce in Section 4 the socalled 
physical scalarproduct in functional space which is 
defined via a sequence of generalized functions. To 
each sta te  | %a (?')> in functional space a correspond­
ing reduced functional e-state | £ a,r(?’)>£ m ay be 
defined, where e defines the sequence.

Using this scalar product we show in Section 5 
th a t the asym ptotic free particles states may be 
orthonormalized.
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In  the Sections 6 and 7 we then construct the 
reduced functional advanced and retarded e-scatter­
ing sta te  in lowest approxim ation.

In  the last section the >S-matrix element of rela­
tivistic nucleon-nucleon scattering is calculated in 
lowest approxim ation. Comparison w ith the result 
obtained in Section 2 shows th a t the functional 
^'-matrix construction proposed by S tum pf repro­

duces the result obtained by usual quantum  field 
theoretical methods. In  general spinor indices are 
suppressed whereas natural units (fi =  c — 1 ) are 
used everywhere. Furtheron we also use nearly 
everywhere the generalized Einstein convention

/ a  (X) g* {x) : =  2  J  d z  / a  (z) ga ( x ) .
a

Supplements are given in the appendices.

2. Q uantum field theoretical Form ulation

The model to describe relativistic nucleon-nucleon scattering may be given here by a self coupled spinor 
field xp{x) w ith x — {xo, x \ ,  x 2, x3) and m ay be characterized by the following H am iltonian12:

H  (t) =  H{  0) =  J d^zy i x )  {— i Y • V +  m)xp{x) +  go J d3y : xp(x) vu xp{x)y(x) v^xp{x) : =  H 0(t) +  Hi{t) (2.1)

with yv (/u =  0 , . . . ,  3) Dirac matrices,
go coupling const,
y  =  y 0yi+ adjoint field op. ( +  denotes herm itean conj.),
v one of the five lorentzinvariant couplings.

The dots mean normal ordering.
For xp and xp we assume the following equal time anticom m utation relations:

[y{x),xp{x')]+IXo^ Xor =  [y(x),  w(x')]+iXo=To' =  ° >  \V>(x)>V>{v')] + ixo=x o' =  7 °  S (E ~  s ')  • (2 -2 ) 

From (2.1) and (2.2) we get with Heisenberg’s equation of motion the following field equations:

(— i y»dß +  m) xp{x) =  — 2g0 : vß xp {x) xp (*) v» xp{x):, (2.3)

(* y» +  m) xp{x) =  2 go : vß xp {x) xp (x) W xp {x) : .

Now let K  — {K°, ft; s . . .  energy, m om entum, spin ...}  be a complete set of quantum  numbers of one 
nucleon, \K 2K i i n )  and \K 2 K \  ou t) the in- and outgoing scattering state for a two nucleon system 
respectively, then the $-m atrix  element S ( K i  K 2 ; K \ K 2) is given by 12, 16:

S { K X' K 2'\ K 1 K 2) :=  ( K \  K 2 out | K 2 K \  in ) . (2.4)

Using reduction technics one obtains 12, 16:

S(K < K 2' ■K1 K 2) =  l 2 ( - l ) P d ( ® 1' -  ffAl) (3 (ft2' -  «*,)
A1A2 _____ ^ __________ ^

+  \  (— ®7 j/^2 )4 J d x i . . .  dx4 Ü [xi \ K i ) i J  (x21 K 2') (i y * dß — m)Xl (i y» dß — m )X2 (2.5)

X <0 j Txp (xi) xp {x2) xp (x3) xp {x4) 10) (—  i y» —  m)X3 (—  * y» dß —  m)XA U {xs \ K 2) U  (x4 \ K { )

where Z 2 is the renormalization constant and

U ( x \ K )  =  [1/(2tt)3/2] |/ m l K ° e - iKxu{®, s)

denotes the Dirac spinor u ( ft, 5) in configuration space. Using 12> 16

_  , (0 I T  ^ in(^l) •. • Win{X4) U{oo, — 00) I 0)
<0 j Txp (*!) xp {x2) xp{x3) xp{x4) j 0)  = -------------------(0 | ^ /(q o  — oo)JO)-------------- 2̂-6^

with
w ( __ 1)71

U (00, — 00) =  2  , J d y 1 . . .< /„ T [- jr1 (v>>''(!/l),V>in(< /l))---^!’l(V’ln(!/«),V’i"fe»))] (2.7;
n =  0
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where is the H am iltonian density belonging to H \  (t) then one obtains in lowest order perturbation 
theory

S i K S K J i ^ K z )  =  £ 2 ( ~  1 )P < W -  ß x J ö W  -  £ ;,)  (2.8)
Xl/,2

-  h Y k / k T k p w  W ^ 6 ( K l ' +  k * ' - k > - K ^ l } ~  « .> *<*» '> -«(«*>  •

3. Functional Formulation

F irst of all we pu t xp =  : xpi and xp =  : ipo as in 6. Then Eqs. (1.2) and (1.3) may be w ritten in the following 
way:

O a (X), y>a' (*')] +/*0=*0' =  *^aa'<5(j — j ')  , (3.1)

(— * 0*i +  W <5a/j) V/J (*) =  fl'o (x ) V>v (x ) Wd (»): (3.2)
with

-^aa' — q | ’ ^ P ß — y 11 — i ) ’ ^a/3y<5— 2 B^ß,^ C yö^,  Bctß,ß — Vß {̂ ^ ^j, Cysß — o

(3.3)

To solve such a problem one has to construct an explicit representation of the field operator satisfying (3.1),
(3.2) and certain subsidiary conditions resulting from the underlying sym m etry groups. This is a very 
difficult task  which has been solved only for very simple and physically unrealistic models. To avoid these 
difficulties we consider single states and characterize them  by their projections on a cyclic basis. In  former 
papers of S tum pf and coworkers only projections on one cyclic basis were considered, namely the -^-func­
tions defined by

T + l a)  =  < °  I (3-4)

Besides these functions we use in this paper also the r~-functions defined by

r ~ ( £ : : : £  I a ) =  < °  I ^ 0 *1 ) • • • v « . (*») I a > (3 -5 )

where T  and T  means time- and anti-tim e-ordering respectively. The reason is the following: The func­
tional $-m atrix-construction given by S tum pf7-8 is based on the fieldtheoretic $-m atrix-construction17’ 18 
by the retarded and advanced scattering state in the Schrödinger picture a t the tim e / =  0. This is a very 
general construction as it makes no use of the possibility of splitting H  into H o and H i which is necessary 
for the interaction representation. In  order to construct the retarded and advanced scattering states one 
has to  investigate the boundary conditions very thoroughly. Performing this one notices th a t it  is con­
venient to  use for the description of causal (retarded) states the r +-functions and for acausal (advanced) 
states the r - -functions.

A similar principle is emploied by N ishijim a19. He uses the reduction formula for retarded and advanced 
products for the definition of the retarded and advanced scattering states respectively. Furtheron r +- as 
well as T"-functions are also used in Bethe-Salpeter th eo ry 20, where r + corresponds to the usual B-S-ampli- 
tude, while r~ corresponds to the adjoint B-S-amplitude.

For these r+-functions a coupled system of linear integral equations may be derived by using (3.1) and
(3.2). Additional these ^ -functions have to  satisfy certain subsidiary conditions21-23 resulting from the 
corresponding sym m etry groups. A very elegant way to w rite down these equations is the functional 
formalism.

For the functional treatm ent we introduce anticom m uting sources jx(x) and corresponding functional 
derivatives da(x) w ith:

[ia.(x),jX’(x')]+=  [Öa {x), ö a '(« ')]+ =  0 » [da (*)»?«'(* ')]+ =  <W (x — x') . (3.6)



I f  x' =  A  x  +  a is a Poincare transform ation we assume the following transform ation properties •

F 0 a (a;) V - 1 =  Dzßdßix') (S(A~1) 0 \
V h w v - i  =  B £ n & )  W 1 s , ! “ l  0  « ‘ ( / I - 1)) <3' 7)

where S  is a representation of the Poincare group in the usual spinor space while V is one in the functional 
Hilbert space.

Furtherm ore we assume the existence of a functional ground state j q o> with

F  | 9?0> =  | <po>; ca (.r) | 9f0> =  0 (3.8)
and the validity of the re la tion :

joi+(x) =  r a/?° £ß{x) , f a+(^) =  r<xß°jß(x) . (3.9)

A representation satisfying (3.6) to (3.9) was constructed by S tum pf24. W ith (3.6) and (3.8) we can in ter­
pret jz(x)  as a functional creation and dx (x) as a functional destruction operator. By successive application 
of jx(x) to | (fo) one gets a basis in the functional space, namely the powerfunctionals2:

\D n (£ :::£ )>  :=  (l ln l ) L A x i ) • ••?«„(*») ko>  • (3 .10)

Defining the adjoint power functional fey

4 K. Illig • Lowest Approximation of Relativistic Nucleon-Nucleon Scattering

:=  <‘ /»!)<v»o| s . , ( * o  P . n )

and considering the scalar product divided by <(9:0 | <£o> one gets the orthonorm ality of the powerfunctionals:

1
( D m ,  ( a '" " '^ ') |  D n ( Vß l  " Vß n) y ----- -——  b n m  2  ( 1)P ^ai/?« (^ l  V h )  ••• ^a n ß m ( x n  ~ ~  V>.n) • (3-12) ■ ■ ,-------------- ..vn----------[w, ! ]2 --------- Ai...An

In  order to describe the system of coupled integral equations for the ^ -func tions we define the Generating 
F unctional:

OO

2 a± (j) :=  2  (*B/w!)Tn± (fi‘;;;J t" I «)?«(«!) •••Ja-fan) ■ (3.13)
n =  0

In  full analogy to 24 the following functional equation for the functional state vector | Za±(j)} :=  ^aHj)  |<po> 
m ay be derived:

( — i +  m b%ß) Zß{x) 1 ^ 0 ') )  =  go Vaßyd {Zß (ar) 0y(x) 0<j(:r) — F ßv±{0) 0,5(0:)
+  F ßa±(0) dv (x) -  F vd±(0) 0 ^ ) }  I £±(j)> =F r ^ ' A ^ ß j ß ( x )  j S±(/)> (3.14)

where F ± denotes the causal and acausal Feynm an propagator respectively, which is defined by

F0Lß+{xy) = <0 | Tf0L{x)y)ß{y) |0> , F^~{xy) = <0 | Tipaix) Vß{y) | °> • (3.15)
The occurence of the F ± (0) term s is equivalent to the normalordering in the field Equation (3.2). Functional 
differentiation of (3.14) followed by putting  all sources j  equal zero yields the system of coupled integral 
equations for the -^-functions. We will not write it down as we are mainly interested in solving (3.14) 
by functional methods only. To do this it is convenient to consider instead of the 2-functional the ^ f u n c ­
tional defined by:

I 2±(?)> =  exp {— \ j*{x )  tF OL0±(xy ) jß (y )} \ &±{ j )> (3.16)

where tF tXß± (xy) is the free causal and acausal Feynm an propagator respectively.
For the 0-functional Eq. (3.14) reads:

(— iTaß/1 0// +  m d a/j) dß± {x) \ 0 ± {j)} =  go Faßyö-dß± {x) dv± {x) dd± {x) : \ &± {j)} =F r ° aa' A^ßjßix)  \ 0 ±(j)}
(3.17)

with {x) =  — lFa.ß±{xy)jß(y)  +  0a (z)- The dots mean normal ordering with respect to j  and 0. This 
is equivalent to the occurence of the F ± (0) term s in (3.14). In  the following we are only dealing with the



free Feynm an propagator. Therefore we will suppress the /. As for the free propagator F 0Lß± (xy) the follow­
ing equation holds:

(— * /W ‘ö„ +  rndoiß) F ßy± {xy) =  ±  A ^ d ( x  — y ) (3.19)
one obtains from (3.17):

(— i r ^ d ß  +  mdoLß) 0/j(*) | &Hj)> =  00 V0Lßvö:dß±(x)dy±(x)dd± {x) : \ . (3.19)

By application of the causal and acausal propagator G(A \ x  — y) respectively, defined by

G ^ ) ( x  — x ' ) { — i r ^ ß d ß  +  mdaL'ß) =  öxßd{x — x') (3.20)

with the same boundary conditions as F ± we obtain from the causal and acausal functional states | 2 ± (?’)> 
respectively the retarded and avanced functional scattering states satisfying the following eq u a tio n :

in

0a(*) | ^ (±)0‘)> =  9o O ^ ) ( x  — x') VoL'ßyö:dß±(x')dy±(x')dö±{x ) : \ +  3a (*) | $ out(?)> (3-21)
in

where | 0 out (j)y is a solution of the free functional equation :
in

( -  »J V  0* +  möaß) Öß(x) I 0 out{j)y =  o . (3.22)

Besides (3.21) the functional states | have to satisfy certain sym m etry conditions. I f  we restrict
ourselves to the Poincare group then these conditions are given b y 21:

^  I <£(±) (?')> =  Jß | ^ (±) (/)> , | (?')> =  m* | 0<±> (?)> , (3.23)
| ^ (± )(?)> =  s (s  + 1 ) I ^ (±) o')> > ® 3 1 0 {±){j)y  =  « 3 1 $ (±) (?)>

with the quantum  num bers: J  =  4-component to tal mom entum  m  =  mass, s =  spin, 53 =  spindirection 
and

^  :=  j*{x) Pß(x)  0<x(*)> W ßv :=  j*{x) M uv(x) 0a (ar), :=  (l/2m ) ettVlV2V3 S£V1 2J?,2„3

where P ß{x), M ßv\ (x) are representations of the infinitesimal generators of the Poincare group in ordinary 
spinor space.

Multiplication of (3.21) by jx(x) P/.{x) J x, sum m ation over a and integration over x  yields, when com­
bined with the first equation of (3.23) the socalled mom entum  averaging25 of (3.21):

in
\ 0 {±) (j)y =  y0l (J; J i ) j OL(x) J/*Pß (x)G<±?(x—x')VX'ßyö :dß± (x')dy± {x')dd±(x' ) : |0<±>O‘)> +  | 0 out(/)> (3.24)

in
or (1 -  if(±>) I 0<±> (/)> =  1 (3. 25)

with JSl<±) =  (go/J/.JA)ja(x) J Pß {x) G ^ ) ( x  — x') Fa’ßVd:dß± (x')dy±(x')dö±(x'):

Instead of solving (3.25) exactly, which would require the knowledge of the boundary conditions for the 
operator (1 — iT^ ) -1 we try  to solve (3.25) by iteration leading directly to the Neumann series:

00 in
I 0 (±) (?')> =  2  [ K {±)]v I 0 out(?')> . (3.26)

v =  0

By physical reasons there do not occur any homogenious solutions of the operator (1 — K ^ )  as the la tte r 
are just the one particle solutions according t o 7, whereas here many particle solutions are constructed. 
For practical use it is convenient to choose the Lorentz-frame with J  =  (E , 0, 0, 0). W ith P q =  i(d/dx0) 
(3.26) then reads:

00 in
\&(±)(j)y =  ^  {go/E j(x (x) i (0/0zo) G(ap { x  — x') V^ßyö : dß±{x') dv±{x') dö±{x’) :}v | # out(?)> . (3.27)

>’= 0

Here one sees the full analogy to formula (4.16) of the nonrelativistic Fermion-Fermion scattering6. Before 
evaluating the Neum ann series (3.27) in the lowest approxim ation we define the scalarproduct for physical 
state functionals in functional space.

K. Illig • Lowest Approximation of Relativistic Nucleon-Nucleon Scattering 5



4. Physical Functional Scalarproduct

The physical scalarproduct, denoted by ( ) in order to  distinguish it from the scalarproduct introduced 
in Section 3 which was denoted by < ) , is defined via a sequence of generalized functions. Before we give 
the proper definition of the physical scalarproduct we will establish some prelim inary definitions:

Def. 1 : Let | %a (?’)> be a functional state
oo

|£a(?)> =  2  in Tn{x1...xn \ a) \ D n ( x i . . . x n)> (4.1)
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then  the adjoin t sta te  (Had)  | is given by

<£«(?') | :=  2 ( ~  i)n r n (x1 . . . x n \ a ) ^ D n (xn . . . x 1)\ (4.2)
n  =  0

rith

T« Ia) := Xn* fc:?«1a) • <4-3)
Def. 2: Let |£a(?’)> be the same functional state as in Def. 1, then the functional £-state | Xa(/)>£ is given 
by replacing all 0 -functions occuring in the r-functions by their integral representation

+  i f  eimt
0 ( ± t )  =  lim ——  \ — 77-r-dco (4.4)

£^ 0  ^  71 J  OJ ±  I E

w ithout performing e -> 0.

Def. 3: Let | 2a(?)> be the same functional sta te  as in Def. 1 . The reduced functional state | X a , r { j ) )  is 
defined by neglecting in the r-functions all terms w ith inner mom entum  conservation. In  momentum

r
space this is achieved if we neglect in r ( q i .. ,qn \ a) all term s in which a factor d( V q (1 < r  5Sw) occurs.

i= i

Def. 4: From  certain universal requirem ents7,8 follows th a t the weighting operator for the physical 
scalarproduct should have the following form in the coordinate space:

:=  2  en g(n) \ D n { x i . . . x n)'> ( D n (xn . . .xi)\  (4.5)
n = 0

where e is defined in such a way th a t it carries the 4 dimensional scalarproduct of a free particle state 
over in the usual 3 dim. scalarproduct. Thereby the weighting factor g(n) is equal to  1 for n  =  1 , while 
g(n ) for n  >  1 is determined by the orthonorm ality of the free w-particle states.

Now we are able to give the exact definition of the physical scalarproduct:

Def. 5: Let |2a(?)> and | £&(?)> be two functional states, then the physical scalarproduct of these two 
states is given by:

(2a(?‘) I Z b ( j ) )  :=  l im £<£a,r(?') |2Be| Z b , r { j ) > s ■ (4.6)
e-> 0

Using (3.12) and Appendix I we can evaluate the righ t hand side of (4.6) and obtain:

( 2 a (?) I £&(?')) =  lim ^ g { n )  e n l / [ w ! ] 2 t£ *  (x x .. . x n \ a) r r/ f a . . . x n \b) 
£-> 0  » = 0

=  lim 2  g(n ) en 1/{(2.t)4« [rc!]2} r rne (qi .. .q„ \ a) i r/ { q i . . . qn | b) . (4.7)
£̂ o  M = 0

S tum pf7 and E n g le rt10 have established spectral representations for the r +-functions. For the r~-functions 
the calculations run quite similar and one ob ta ins:

=  h  (  Z ( - 1 )P " ± ,' C : ; " - ^ ) ( ± o * - 1 (2 * ) 3 » + 1
\Ai... An

x  d  ̂ i  qls -  paj  n | ^ (  i  U  -  p»}j 2 A ~  P% ±  i e j j>j (4.8)



where T j means integration or summation over a complete set of interm ediate states \/x). {Pn°, pn) is the 
energy-m om entum  eigenvector of such a state while pa =  (pa°, Pa) is th a t of the sta te  | a).  The structure 
function M ±r ( £ " 'Mn~la“) {r denotes the reduced part) is defined by:

■= <01 v>ai(0) | ^ 1> <jMi| . . .  vU<>)|«> (4.9)

where +  or — stands whether | a)  is a causal or an acausal state.
Inserting now (4.8) into (4.7) one gets for the physical scalarproduct of two causal and acausal functional 

states respectively 7 -10:
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( % > * ( ? )  | =  l i m  f  e n g \ n )  (  2 /  M ± r  ( 2 * ) 2 * + 2 ( 2 * . * ) » - i
£_0 n—o n.  W - y ^ n -1 (440)

X b(V a~ V b)Y\{?>^ss -  P n , ) { ± v l ’. T  A  +  2 i e )_1}J

whereas the physical scalarproduct for a causal and an acausal functional state is given by:

en g{n)
(£ .* (;)  | S 6±(?)) =  lim  J  J . I  M ± r  (2 jr)2“+2 ( 2 j it ) “—1 ( — 1) (»)

£->0 n = 0

X <5 (pa -  p b) U { d  (pb -  P ^ ,  -  p„'s) ( ±  Pb° T  =F v \ ’. +  2 i e)-i}J . (4>11)

The expression for (£«“ (?) |2&_ (?)) follows directly from the expression for (Sa+ [j] | 2V (?)) proved in 7*10 
however formula (4.11) has to be proven. To do th is we will carry over the interesting quantity  r~ • r + 
into an expression similar to th a t which one obtains for i + • f + given in 10 formula (2.17). W ith (4.8) we 
h a v e :

i n r,£̂ i---Qn\a) Tn r’ e{qi---qn \b)

____________  I n  \ n—1 [ ( sC;:::“%‘;5<2*)2”+2''2”-2a I i. - p* n a Zu-\s = 1 /  s =  l I \ r = l
A'l ...A'n fll... fin-1

X ( i d  -  <  +  « ) " ]  <3 ( I  q. -  P») ”n  {-5 (  i t r ,  -  tV .) ( I  ?;/, -  JV, +  i « P [

- Z ( -  1)p+p'! x + , < & zf~Z& < 2 *)2”+2( -  «)*•-*
A'l ...A'n f l ' l . . .  f l 'n -1

x (3 ( 2 3« - ft*)5 ( 2 3« - 2>6 j n j<5 ̂  K  - Pu. H 2 <\rr + ~ Pb 
X ( 2 ? !  — r f ,  +  * e) ( 2 2°, — K  +  rf'. — * £

U=1 /  \ f= S + l

(4.12)

- Z ( —  i ) p + p ' +(S) z i x - ' a r . n o e * ) * " *
Ai...Ab 1^1. . . /in-1

X a ( it ,  - pa) b ( i  q, - n ‘ {a ( i  u  -  p„) a ( + tv... -  p»

X I Z 9»v — P? +  3>° V .— * £ ) |  Zsi — A  +  • C j Jj •
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Replacing now in (4.12) — £ y n_, by and by p®-, we essentially obtain form ula
(2.17) o f10. Therefore it is sufficient, to perform essentially the inverse replacements in (4.10) in order to 
obtain (4.11) taking care of the interchange /Ui —> fu\ .

5. Asym ptotic Free Functional States

Free functional states are characterized by satisfying (3.22) and (3.23). F irst of all we consider one 
particle states. Let A  =  {A 0, ft, s, m, ...}  denote a complete set of quantum  numbers, then the in- as

in
well as the outgoing free functional one particle states | @ont(j, A ))  are given b y 24

in
I @out( j ,K)y  =  i fp(x | A) jß{x) | <fo) (5.1)

where (cf. Appendix II)

f ß (x \K)  =  <,0\W (z)|X >  =  { ] 2 ^ M(S,S)e' ' "  f° r ß = 1  (5.2)
[ 0 for ß =  2

denotes a one particle solution of the free Dirac equation

(— +  mdxß) fß (x \K )  =  0 . (5.3)

As for the $-m atrix  construction we only need the scalarproduct of advanced and retarded states we 
restrict ourselves on the calculation of the physical scalarproduct of out- and ingoing free functional states. 
For the one particle states we obtain with (3.16) and the translational invariance of F ± :

($ out0‘, A ') I V n(j, A)) =  ( 0 out(j, K')  I 0 in(j, A))

— lim e g ( l ) f ß ( x \ A ') fß (x \K )  =  lim e2 jrö (0 ) b (ft — f t ') . (5.4)
e —»0 e—>-0

This undefined expression may be transform ed into a welldefined one, if we define the £-funetion 
fß£(x \K)  in an obvious way. As

we define fße(x\ A) by:

i r
A) lim ---- \ e~imt

J
1 1

co +  i s co — i s

I c>—i(Dt l 1
dco .\ t

ft) +  i £ co — i E

doj

(5.6)

Inserting this in (5.4) then residual integration yields:

(Xout(?, A ') | 3 in(?’, A)) — lim efß£{x\ A ') fße{x\ A) =  b (ft — f t ') . (5.7)
£ -» 0

Comparing (5.7) and (5.4) one obtains the formal iden tity : lim £ 2 tt6(0) :=  1 . (5.8)
£->0

Defining in (5.1) the one particle creation operator by: %+(K) :=  i fß{x  | A) jß{x) (5.9)

then the free functional particle states are given by:
in 1

\ 0 oui(j, A i...A „ )>  =  2I+(A i) ...  ^ + (A W) |y 0> =  (*'w//w !) /( .r i | A i) . . . f { x n \ K n) j(xi )  . . . j { x n) \<p0>
I 71.

=  (i nln l ) l/|/w! { 2 ( — l)p /(» i | A ;>1) ... f {xn \ K  ?J }  j (xi) . . . j { x n) | y 0> (5.10)

=  : (in/ n !) cpn± [ x \ . . . x n \ K i . . . K n)j{x\ ) . . . j  (xn) \(po) .



The corresponding 2-functional reads:
in in

\Zout(j, K i . . . K ny> =  exp{— \ j ( x )  F ±(xy) j (y )}  | 0 out(?', K x. . . K n)y
00 [n+2/j,
2  7~r ■ ■Xn+2fl\ . . K n) j  (x\) . . . j  (xn+2/j) \(po) (5.11)

^ = 0  yn -\- £  [a )\

where the -^-functions are given by a specialization of formula (II .7) o f26:

( -  1 )"
t ±»+2*i{ x i . . . x n+2ß \ K 1 . . . K n) =  2  (■— 1 )p , r 9 ,»± (*Ai - - . x XuK i . .  . K n) F±{xK+1 x K+2) ...

;.i...a„+2h A * p \ n \

f ± (x k ^ * k +J -  (5-12)
In  momentum space this formula read s:

( — IV* ~

in+2ß± (Ql • • -<ln+2ß \ K \ . . . K n) =  ( ~ ' *P) 1 f  ((7>li ■ • • | -^1 • • • K n)
Al...An+2„ ZP pln l

X + • • • ^ ± (?An + 2„-19,A„+2<1) • (5.13)

From  F ± (xy) =  F±(x — y) it  follows th a t P ± (qiq2) =  <3 (gi +  52) ^ ( g i ) .  Therefore according to Def. 3 
the reduced ^ -func tions are given by

Te±r(g i...? e | ^ l - . - ^ n )  =  den(pn± {(Il---<ln \ K \ . . . K n) =  <5enr re± (g i.. .qn \ K x . . .  K n) . (5.14)

From  here one obtains for the reduced e-T±-functions:

T±r'e{qi. . .qe \ K i . . . K n) =  denr n±>e(q i . . .qn \ K 1 . . . K n) =  den(p±n>e{q1 . . . qn \ K 1 . . . K n) (5.15)

with this relation the scalarproduct of a free functional outgoing m-particle state and a free functional 
ingoing n -particle state reads with (4.7):

( £ ° u t  ( j ,  K {  . . .  K ' m ) I ( j ,  K \ . . .  K n ) )

=  bnm-r- 7̂ g { n ) \ m i r n- e{q1 . . . qn \ K 1 . . . K n) r n+£(qi . . .qn \ K 1 . . . K n) £ ^ ( 2 n ) ^ n . (5.16) 
[W.J £ ^ -0

A straight foreward calculation similar to  th a t o f10 gives the following spectral representation for the 
r w±-functions (spinor indices oi are w ritten down explicitly):

w  j d P L - . d p » - !  ( g i 7 )

V I . . . V«  1 =  1  V = 1  / ?  =  1  { \  8 = 1  ]  \ S  =  1  /  \ *  =  1  ]  I

By comparison with (4.8) one directly obtains the structure function for a free functional %-particle s ta te :

( w \  n n — 1 j  j  \
V,. . .Vn-^Kt\ l j y - l 2 ( -  i)p U f o l( K ) n ö \V1 - 2 K v.).  (5.18)
l c r i . . .  1  CTn /  V i . . . v n 1 =  1  j =  1  \  S = 1  /

N oting (5.18) and (4.11) we get for the scalarproduct (5.16) after some straight forward calculations: 

(%out (j, K i  . . .  K ' m) I £ in (j, K i . . .  K n))

=  bum lim —  ̂ J d p i .. .  dj)n- i  d p i '. . .  d p V i  M r
£ -> 0  ^  • \ 1 cti... l a n J

X M r A  ( -  1)(») (2jr)2n+2 ( 2 n i ) * ~ i d l  Z ( K t - K {'))
\1 a„... l ai f  \i = l /

x  n  |(5 - P n - s -  p / j  ( . 2 ^ °  -  P*0' -  P °n s  +  2 t  XJ (5.19)

— $nm— r 2  (— 0  <5(® /— &vj)

K. Ulig • Lowest Approximation of Relativistic Nueleon-Nucleon Scattering 9



when we use (5.8) and choose
g { n ) : = 2 * ~ 1 . (5.20)

Thus we have obtained the orthonorm ality of the free functional out- and ingoing states.

6. Two Particle Scattering; Functional in Lowest Approximation

Let K \ K 2 and K \  K 2 be the two complete sets of the two in- and outgoing particles respectively. 
According to  (5.10) the corresponding in- and outgoing free functional state is given by:

in 2̂

1 ®out O'. !:■£•)> =  y  f 2 {x>) j» (X2> 1 T0> ■ (9' '  >

Our aim is to evaluate the N eum ann series (3.27) in the lowest approxim ation. F irst of all we perform the 
normalordering in K ±. This y ields:

=  gl  ?<*(*) i d- G(ap ( x  — x') {— Fa’ ßyöF±ßß’ {x' — y') F ± vv> {x' — z') F±öö' {x' — u') 
hi ct

x  jß'  (y ') j y  {z') iö' (u’ ) +  Wft’ ßya F±ßß' (x' — y') F ± vy  (x' — z') j ß> [y') j r  (z') d0 {x')

— Fa'ßyö F±ßß'  (,x ' — y') jß’ {y') Sy {x') dö (x') +  V^ßyö 0ß {%') öv {x') dd {x')} (6.2)
with

11 >xßyö •— Faj3y(5 T a.ßöy l a  öyß > l a  ßyö '=  Vtxßyö  ̂otyßö Vcnöyß . (6-3)

From  (3.27) we have for v =  1:
in in Ä in

\ 0 ( ± ) ( j , K 1 K 2)> =  K ± \ 0 ouH j , K 1 K 2)> +  \ 0 ont ( j ,K l K 2) > = : \ 0 M ( j , K i K 2)> +  10 ^ { j ,  K 1 K 2)>. (6.4) 

Combining (6.1) and (6.2) we get after some elem entary calculations:

| 0 W
0  ^

=  ¥  V«0Y6F ± i ( x - x 2) F ± 3( x - x 3) F ± u( x - x A) ,2 fxt (X5 |# l )

X /a e  (*6 I K 2) ^ a l (®l) • • • ?a6 M  | <po>

+  gl i G*r*(Xl -  x ) w *ßvöF ß- {x -  x 2) F ±  {x - x 3) ! j 2  (— 1)p /«4(*4| K h ) f 0( x \ K - A& Cti H r  |/2

x  l^o) (6.5)

-  gl  * GH \ X 1 -  x ) V *ßyöF±2(x -  x 2) 1 I 2  ( -  l ) p /y(*| K h ) f d( x\K^) \j atl{xi)j ttM{x2) \ (fo>.
JJJ (jt\ V I ̂ 1̂*2

As our starting  point for defining the physical scalarproduct was the functional state | <Xa(j)y given in (4.1) 
w ith to tally  antisym m etric r-functions we have to transform  (6.5) into the standard form given by:

00 i n
I 0 a  (?')> = 2  , <fn (« 1  • • • x n  j « )  j  ( * l )  ■• ■ j  ( « » )  | ( f 0 >  ( 6 . 6 )

n = 0 nl

w ith the to tally  antisym m etric ^-functions:

(pn { x i . . . x n \a) =  -  d(x„ ) . . .  0(zi) \ 0 ( j ,  a)y/j=0 (6.7)
i n

Using (6.5) and (6.7) we get for the (^-functions of \ S ^ ( j ,  K \ K 2)):

h (±) C 2 k i k z) =  >  2  ( -  !)P x ) V * ß y ö F ± J x  -

X \  \ l < , - i r M x \ K h ) M x \ K h )\ (6 .8)
]/* [hfo J
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and similar expressions for c p ^  and which are of no interest in connection with this paper, as we are 
only interested in first order terms of the coupling constant go in the $-m atrix  element.

As the functional states | X(±) (j, K \ K 2)) and | $<±) (j, K \ K 2])> are combined by the transform ation (3.16) 
which is equal to  th a t of free functional states (5.11) we have as in (5.14) •

I Xr<±> (j, K \  K 2)> =  I 0 rl±) (j, K x K 2)} . (6.9)

In  order to  get the reduced ^ -fu n c tio n a l state we consider the fouriertransform  of (6.8) which reads 
(cf. App. I  and I I I ) :

~2<±) («.£ K l K 2) =  g° (2 *)« d(qi +  q2 —  K i — k 2) - L  j  2 i -  U ( s h ) \

X I W  j 2  ( -  l)p ]/nfi +  fl«±> («„,) ?„,)} ■ (6.10)
l^l 2̂ J

According to Def. 3 of Section 4 the reduced functional scattering sta te  then  is given by
^ in

I £ r <±> ( j ,  Z 2 )>  =  I <pr (±) ( j ,  K i K 2 ) >  =  I 0 r <±> ( j ,  K x K 2 y )  +  [ < p o u t(J f K l K 2 ) ^  

=  <P2{±) (qiq2 \ K ! K 2) j{qx) j (q2) \ <p0}  (6 .1 1 ) 

w ith q)2<'±)(qiq2\K1 K 2) :=  ^ 2(±)(?iff21K XK 2) +  (p2 (qiq2 \ K 1 K 2) .

Before closing this section we will examine the q)2 <±)--function in some more detail.
According to  (5.2) we have f2 = 0. Therefore only the quantities V’m i ,  F1211, F2111 and ^2211 are of 

interest. From  (3.3) and (6.3) we obtain:

^1111 =  ^2111 =  2̂211 =  0 > ^1211 =  2 ^ 0 ^ .  (6.12)

Using the fact th a t # n ±  =  F22± =  £ i2(±) =  $ 2i (±) =  0 and Fapiq) — — Fpa(— q) then  one obtains with 
(6 .12) and ö n W  =  : G ^ ,  F u *  = :  P ± from (6.10):

j k l±) O T I K i K 2) =  -  (l/2 g o l E ) d ( K 1 +  K 2 - q 1 ~ q 2) \  2  ( -  l )p +  q i2 0<±) (<?i) v,
[ Ai Aa

x  -  Vm2 +  P22 ^ ± ( ^ i ) ^ / ( S A2) 0 (±)^ / ( ^ 1)j (6.13)

while the  other q>2 (±>-functions ( =  <p2 (±)-functions with a t least one cut =  2 , i =  1 ,2) are zero.

7. Spectral Representation

The aim of this section is the determ ination of the functional retarded and advanced e-scattering state 
in lowest approxim ation.

F irs t o f all we consider the spectral representation o f a general T2±-function w ith respect to  a two particle 
sta te  I Ky.  I t  reads according to (4.8):

~^±(qa\Z I K ) =  J  &V (  2  ( -  l)p ^ ±r(^faAa) M 7 ( ±  i) ö (<71 +  q 2 — K)  <5(qAl -  p) (q°Al — p ° ± i  e) ' 1 J .

(7.1)
Now we will prove the following

statement: The spectral representation of the quantity  <̂ 2(±) as given in  (6.13) is th a t of a general r ^ -  
function bu t w ith an  e dependend structure function. P u tting  co =  ]/p2 +  m 2 and K  :=  K\- \-  K 2 the 
la tte r is given b y :

K. Illig • Lowest Approximation of Relativistic Nucleon-Nucleon Scattering 11
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1

iC» _  2 pO ±  2 i e K°

X {p°y° — p -y  +  m)aivß f{&i) (p°y° +  p- y  +  ’»)t>#t>'*/(®2)

+  d ( p ° - K 0 - o j )
1

x o  -  2  =p 2  * £K 0 ( p 0 - K ° )  ( 2  t t ) 3

X ((p° — K°) y° — p-  y  +  m)ai v„/(& i) ((p° — X°) y° +  p • y  +  rn)a2v»f(®2) . (7.2)

proof: Inserting in (6.13) the expressions for and drW from App. I l l ,  we obtain with i f  := i ^ i  +  iL2 
and co :=  coi =  J m2 +  qi2 - o 2 =  \ m 2 +  q22 (as ft =  0)

1 1
f c i > (Ti* I •R'lA 'o) =  ±  ( 2  J t ) 4  | / 2  (5 ( j !  +  ? 2  — / f ) n

2 A uco = 1 1 r/j° — (,J ±  * £ f/;° +  to T  i £

Using now the relation

n

x  [ 2  (—  !)P (91 +  m) 1) (?2 +  rn) .
Al ?,2

(7.3)

/ _________ 1 1 .  1

(  9 ; '0  —  M  ±  *  E q j 0  +  c o  = f  i  e  J

— 6 {qi° +  q2° — K°)

+

d(qi° +  q2° — K°)  

1

/< =  i

1

K ° - 2 c o ± 2 i e  K °
1

q»0 —  co ±  * e
(7.4)

1 1
1 11K° ~  K°-\-  2co =F 2 i  e qß° — K°  — (o ± i s \

we obtain from (7.3) after some elem entary calculations:

~ f c * H r i \ K i K 2) = ±  >»»<2 ^ 4I j l  ä ( 9 l  +  ? 2 _ £ 0 )
m K °

x  ^ / ( f t i )  (coy0 - f  p • y  +  m) v»f{®2)

2  ( — ! ) p  ( w y °  — P * Y +  wO
^1̂ -2

1 1

K° — 2 ( o ± 2 i e  K° — o j ± i e
(7.5)

1 1 1 1
if°  +  2 co=F2 *e q — K'0 — co ±  i e j

or, when introducing an additional integration over p  and putting co :=  J/ m 2 +  p2 we have

f e ’ ( 7 ;  I « ! )  =  ±  a (?1 +  ?2 -  A-)

X |<3(2>° — co) (p°y° — p-Y  +  m)f(Üi)  {p°y° +  p • y  -f  m) v»f(®2) 
P°

1 1

R 0 -  2 pO ±  2 i e K 0

+  d{p° — K ° — co) ((p° — K°) y° — p • y  +  m) vß f{® 1) ((p° — K°) y° +  p • y  +  m)
pi) — y(U

x  2) (7.6)

Comparison with (7.1) now directly yields the structure function (7.2), q.e.d.
W ith (5.15), (6.11) and (7.6) we now obtain for the functional advanced and retarded reduced e-scatte- 

ring state in lowest approxim ation:
i’2 ~

(l r^ ) ( j , K 1 K 2) y  =  -- ^ 2(±)(gi?2 | K i K 2) j ( q i ) j ( q2) l^o ) +  2} (f2,e(qiq2 \ K i K 2) j iqi) j  iq2) | (fo"

: I I r (±) (j, K 1K 2) y  +  I ZrouHj, K 1K 2) Y 7.7)



8. Functional S-Matrix in Lowest Approximation

In  the Heisenberg picture the ^-m atrix  element is defined by the scalarproduct of the corresponding 
advanced and retarded scattering s ta te 17-18:

S ab :=<«<-> | &<+>> . (8.1)

According to  S tum pf7-9 the corresponding ^-m atrix  element in functional space is given by
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Sa b =  (£<-> (j, a) |2<+> (j, b)) =  lim «<£r <-> (j, a) | 2B£| Xr <+> (j, 6)>* . (8.2)
£ -> 0

Inserting (7.7) into (8.2), one obtains 

£ (ÄV K 2' ; K !  K 2) =  ( 2 (-) (j, K x' K 2') | 2<+> (j, K x K 2))
=  ( % o n t  K l '  K 2 ' )  I £ in  ^  K l  K 2 ) )  +  ( £ ( - )  ß  K l '  K 2 ' )  j £ in  ß  K l  K z ) )

+  (2°ut(?\ K { K 2') I f<+> {j, K xK 2)) +  (£<->(/, Z i 'j r * ')  |S<+) (j, K xK 2)). (8.3)

As we are only interested in linear term s of the  coupling constant go in the <S-matrix element, i t  is 
sufficient, to  consider the first three terms in (8.3). The first term  was ju st considered in Section 5, where 
we found the result (5.19). The calculation of the other two term s will be performed now using (4.11),
(5.18) and (7.2). Taking into account the limes procedure e 0, one notices th a t from (7.2) only those 
term s contribute which have the denominator K°  — 2 p° i  2 i e. Therefore we obtain w ith (5.20):

(S«"*Ö,Xi'Xi!')|X<+>(j, X itfj))  =  lim —  g(2) !  dp dp ' M '
£—*0

x  <2 *>6 < -  *) ■*<* -  P -  f ')  * o  Z  z V + I 7 7  4 (*  -  D

=  lim £~ J  dp dp'  - L  2  (— 1)p/<.,(*v)/<„( ® v ) — v ' ) b ( P °  — «>)
£—>0 J /"

X r 09°0 f9 \3 -VÖ---- I {p0y0 ~  P Y +  (P°Y° +  P- Y +  m )a[ V» f  (®2)K ° p 0(2n)3 K ° — 2 p ° - \ - 2 i e
X (2 n f 2 n i {-  1 )< 5 ($ -  p -  *>') (J5T° -  -  p0' +  2 i  e)-1 6 (K  -  iT ) (8.4)

=  2 ( -  ( - 0 ( < y ° -  ä v r + m ) „ % / ( 2 i )
a^ .2 a  a ;.2

X ( n V  — C  • Y +  m)aiv»f{®2) (2 i)-2 ^(iT — X ') .

Using now (A 2.8) we get:

(£ out0', Ä Y X a') I 2<+>(?, ^ 1 ^ 2)) =  -  i (2 j i )*d(K -  K')  90 m2
X 0 (2 ?r)6

X 2 ( ~  1 )p ^ w ( t Al0 ^ / ( ^ i ) w ( ^ v ) ^ / ( ^ 2 - (8.5)
•̂1^2 ^2

In  the same way we obtain

(S<-> ( j , K i  K 2 )  [ S 111 (j, K .) )  ( 8 .6)

=  - . - ( 2 3 t ) < a ( X - J C ' )  Z ( - l ) P 4 o  « ( y ° «/ . * / *( »1' ) « ( » a , ) y ° * / * ( «i.) -
iC° ( 2  7c) 6 ^ ; . 2

Using the re la tion16
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valid for all five lorentzinvariant couplings and noticing th a t we are working in the special frame with 
$  =  0, which implies together with the ö-function occuring in (8.5) and (8.6) th a t K\® =  K f l  =  K \ Q' =  K $ '  
we may combine (8.5) and (8.6). Thus we get for the »S-matrix element in lowest approxim ation:

S ( K l ' K 2' - , K 1 K z ) =  1

Gr\ 771

(2 jt)6 | /A iu A 2u A iua 2u /.i/2

which is just the result obtained in (2 .8), when using conventional reduction technics and perturbation 
theory. Therefore in the lowest approxim ation the functional approach and the conventional approach 
are equivalent.
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Appendix I

Relations between coordinate space and m om entum  space:
Defining:

?'<*(«) =  5 ei^ J 0L(q) dq , da{x) =  1/(2 t t)4 J e~^x ßa (g) dq (A 1.1)
it  follows from (1 .2):

=  [ö<x W), 9« '(g')]+ =  0 , [0 a(?)Ja ' (?')]+ =  <W<5 (q — q') . (A 1.2)

As F ( x y ) and G(xy) are translation invariant one has:

Fiqiqo) =  J  ex p {i{qi x \  -j- qzx?)} F{x  1 X2) d .rid .r2 =  (2 . t)4 Ö{qi +  qz) F  {qi),
G{qiq2) =  Je x p { i(g i£ i +  92^ 2)}G[xix2) dx id xz  =  (2 tt)4 (gi +  ^2) G{qi) . (A1.3)

Defining now

Tn ( x i . . . x n I a) =  l / (2 ?r)4w J exp j — i in iqi  • •• | «) dgL...  dqn (A 1.4)

then the ^-functional in m om entum  space is given by

00 in
|£a(f)>  =  2  —ri n { q i - - - q n \ a ) J { q i ) . . . J { q n) | <?o> • (A 1.5)

n = 0 f t  •

Appendix II

The free Dirac-field and the norm alization of one particle states.
We begin with the well-known decomposition of the free Dirac field 16:

Y>(j.0 =  2 \  ^v^TsT 1/ “  { & (M )w(P>5)e _ip* +  d+( M ) W M ) e <2,a:} (A2.1)±SJ (2 7t)3l2 \  p°

and a similar formula for y>+(£, t). A basis in the corresponding fieldt.heoretical H ilbert space is given by 
successive application of the creation operators b+ and d+ to the vacuum | 0). The scalarproduct of these 
basical states should be defined relativistically invariant, as this is true for power functionals (2.5). 
According to 27 this means for one-particle states | K y  and | K '>:

( K '  I K> =  (K°lm) d (8  -  r ) .  (A2.2)



This can be achieved by introducing new creation- and destruction-operators b', b,+, d' , d'+ w ith :

[&' (p, s), b'+(p' , «')]+ =  [d' (p, s), d'+{p, «")]* =  (p°/ra) ö (p — p') dSS' (A2.3)

while the other anticom m utators vanish. The connection between the primed and unprim ed operators is 
given by:

a'(p, s) =  [ / / /m a ( ( ) ,  s) with a e  {b,b+, d , d +} (A2.4)

or expressed by the s ta te s :
| K }  =  &+' ( f t , s) 10> =  j/ÜL°/m &+ (f t , s) 10> . (A2.5)

W ith  (A2.1) and (A2.5) we obtain for the matrixelement <(0 | ^a(^) \K)> for a  =  1:

<0\y>(x) \K> =  J _ « ( f t , «)«-«*==  : / ( « ) « - « *  (A2.6)

for a  =  2: <0| tp{x) \K}  =  0 (A2.6)

where « (ft, s) is the usual Dirac spinor satisfying

{K°y°  — ft - y  — to) «(ft, s) =  0 and « (ft, s ) «(ft, s') =  dSS' • (A2.7)

Furtherm ore the equation « (ft, s) (K°y°  — ft • y  — m) =  0 implies the useful form ula:

/( f t)  (K°y°  — ft • y  +  m) =  2 m /( f t ) . (A2.8)

Appendix III

The free causal and acausal Feynm an propagator F ±0ip(xy)  and the causal and  acausal propagator
£ W (±) (x v ) :
Using (2.13), (2.15) and from 16 the formulas (6.47) and (13.72) we obtain with A+ (p) =  { i  (p° y° — p • y) 

to} (2 to)-1 :

F ± [x\ xz) =  J dp (m/p0 (2 jr)-3) { 0  (±  {h — t2)) A+ (p) exp {— i p (xi — x 2)}

+  0 { ±  (h  — ti)) A - ( p ) e ^ { i p { x 1 — x 2)}} , (A3.1) 

G(±)(xix2) =  ±  i Jd p  (to /^°(2 tt)-3) {6>(± {h — t2)) A +{p) exp{— i p ( x i  — x 2)}

+  0 ( ± { t 2 — h)) A - ( p )  exp{ ip{x i  — a?2)}} . (A3.2)
In  m om entum  space they  re a d :

F*  (qi 32) =  ±  i (2 n) 6 (qi +  q2) [q\ y° — qi • y  +  m )/|/~2 qi2 +  m 2

X I----------  _ — ----------------- -------------- --- =----- -—1 (A 3.3)
| </i° — |/q i2 +  to2 i  i s qi° +  ]/qi2 +  to2 =F i s

C?<±> ( M S )  =  -  < 2  ( ? 1  y ° ~  q i ' Y +  ^
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2 J/qi2 +

qi° — Y qi2 +  w 2 ±  i qi° +  j/q i2 +  m 2 i e
(A3.4)
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